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Molecular Dynamics

e« An atomic-scale simulation method

- Compute the trajectories of all atoms
- extract statistical information from the trajectories

Atoms move according to
Newton’s law:

ml.Ri = Fl.
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Molecular dynamics: general
principles

e Integrate Newton’s equations of motion for N
atoms
mR.()=F®R,,..,R,) i=1...,.N
F(R,...R,)=-VER,,...R,)

l

« Compute statistical averages from time
averages (ergodicity hypothesis)

<A> fdr3N dp”" A(r,p)e " "P) = fA(t)dt

. Examples of A(¢): potential energy, pressure
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Simple energy model

e Model of the hydrogen molecule (H,): harmonic
oscillator

E(R,R,)=E(R,-R,))
=a(R,-R,|-d,)’

e This model does not describe intermolecular
interactions
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Simple energy model

e Model of the hydrogen molecule including both
intra- and intermolecular interactions:

ER,...R )= Y E (R-R|+ > E,.(

{i,jyEM iIEM
JEM'

R -R))

e This model does not describe adequately
changes in chemical bonding
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Simple energy model

 Description of the reaction H,+H— H + H,

s . b

e.

e The model fails!
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What is a good energy model?
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Atomistic simulation of complex
structures

« Complex structures
- Nanoparticles
- Assemblies of nanoparticles
- Embedded nanoparticles
- Liquid/solid interfaces
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The energy is determined by
quantum mechanical properties

e First-Principles Molecular Dynamics: Derive
interatomic forces from quantum mechanics

Ni-tris(2-aminoethylamine)
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FPMD = Molecular dynamics +
Electronic structure

Ni-tris(2-aminoethylamine)
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H,O + graphene
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First-Principles Molecular Dynamics

Monte Carlo Electronic
Structure

Molecular Dynamics

Theory

Quantum Chemistry

Statistical
Mechanics

Density Functional Theory

R. Car and M. Parrinello (1985) MlCCOM 14



Electronic structure calculations

e Problem: determine the electronic properties
of an assembly of atoms using the laws of
quantum mechanics.

e Solution: solve the Schrodinger equation!
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The Schrodinger equation for N
electrons

e A partial differential equation for the wave
function v:

r R’ Y EL(R")

. 0
lhgw(rla 9 N’t) H(rl’ 9 N’t) w(rl’ *? N’ )

« His the Hamiltonian operator:

H(r,... rN,t)———ZV +V(x,,...,xy,1)
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The time-independent
Schrodinger equation

 If the Hamiltonian is time-independent, we

have
iEt/h

Y(rx,,....,ry, D) =yY(r,....,ry) e

e where y/(r) is the solution of the time-
independent Schrodinger equation:

H(r,...,r,)w(r,...,ry) :]I_'Zw(rl,...,rN)

energy
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Solving the Schrodinger
equation

e The time-independent Schrodinger equation
can have many solutions:

H(r,...v, )y (r,...ry)=E ¢ (r,,....,r,) n=0,1,2...

e The ground state wave function vy, describes
the state of lowest energy £,

e Excited states are described by vy, v,,..and
have energies £, £,.. > E,
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Hamiltonian operator for N
electrons and M nuclei

o Approximation: treat nuclei as classical
particles

e Nuclei are located at positions R, , electrons at r,
H(r,...r,,R,,...,R,,)=

B V2 _ J €
2me§ | ZZ ri_RJ +i2jrl rj‘
+§ If%jlcf. +%§1MZR,2
i<j | j i=
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The adiabatic approximation

e The Hamiltonian describing an assembly of
atoms is time-dependent because atoms move:

H(r, t)———ZV +V(r,1)

V(0.0) = 2V (=R (O) ()

time-dependence

through ionic positions
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The adiabatic approximation

e If ions move sufficiently slowly, we can assume
that electrons remain in the electronic ground
state at all times

W(l‘,t) — '7”0 (I’)
H(r,{R, ()}, (r) = Ep,(r)

/

Ground state

Ground state energy

wave function
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Mean-field approximation

e The problem of solving the N-electron Schrodinger equation is
formidable (N! complexity).

H,...,r,) ) v (x,...ry)=E v (I,....,fy)

- Wave functions must be antisymmetric (Pauli principle)

W, ol T, ) = =W (1, LT, LT, Ty )

T T

exchanged

e Assuming that electrons are independent (i.e. feel the same
potential) reduces this complexity dramatically.

- The potential is approximated by an average effective potential
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Independent particles, solutions
are Slater determinants

e A Slater determinant is a simple form of
antisymmetric wave function :

w(r,...,ry) =detig,(r;);
e The one-particle wave functions ¢, satisfy the
one-particle Schrodinger equation:

h(r)(pz‘ (r) = &P, (r)

2

h(r) = ———V* +V . (r)
2m t

Note: effective potential
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Electron-electron interaction

H(rl,.. IR, R, =

IVE e

I j=I
- Zl.zje2 1 2
~YMR:
+;\R -R].\Jrzlz1 o
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Density Functional Theory

e Introduced by Hohenberg & Kohn (1964)
e Chemistry Nobel prize to W.Kohn (1999)

e The electronic density is the fundamental
quantity from which all electronic properties

can be derived E = E[p]

E[p]=T[p]+ [VI)pr)dr+E [ p]

e Problem: the functional E[p] is unknown!
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The Local Density
Approximation

« Kohn & Sham (1965)
E[p]=T[p]+ [V(®)px)dr+E [p]

e Approximations:

- The kinetic energy is that of a non-interacting electron gas of
same density

- The exchange-correlation energy density depends locally on the
electronic density

E, =E,[p(M)]= [&.(p(r)p(r)dr
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The Local Density
Approximation

e The mean-field approximation is sometimes not
accurate, in particular for
- strongly correlated electrons
- excited state properties
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The Kohn-Sham equations

e Coupled, non-linear, integro-differential
equations:

(—Ag. +V(0,r)p, = £, i—1...Nel

V(p.r) =V + [ L dr v, (o). V()

r-r]

o(r) = E\qz- ol

[¢:@0)¢,(r)dr =5,
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Numerical methods

e Basis sets: solutions are expanded on a basis of
N orthogonal functions

¢,(r)= Ecij @; ()

J

[o,@¢p,r)=6, QCFR
Q

e The solution of the Schrodinger equation
reduces to a linear algebra problem
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Numerical methods: choice of
basis

e Gaussian basis (non-orthogonal)

—ai‘r—R‘z

(Pi(l') =€
e Plane wave basis (orthogonal)

@, (r) ="

e Other representations of solutions:

- values on a grid
- finite element basis
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Numerical methods: choice of
basis

« Hamiltonian matrix:
H, =<q0i‘H‘cpj>= fgpf(r) Hy (r) d’r
Q

o Algebraic eigenvalue problem

He =¢.c c eC”
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Numerical methods: choice of
basis

e Non-orthogonal basis sets lead to generalized
eigenvalue problems

S, =(8]¢,)=[4"® 4,()d’r 25,

He, =¢Se, ¢ €C"
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Solving large eigenvalue
problems

e The size of the matrix H often exceeds 103-104
e Direct diagonalization methods cannot be used

e |terative methods:
- Lanczos type methods
- subspace iteration methods, Chebyshev filtering

e Many algorithms focus on one (or a few)
eigenpairs

e Electronic structure calculations involve many
eigenpairs (~ # of electrons)

e Robust methods are necessary
UNIVERSITY OF C "ALIFORNIA M I ccoM



Solving the Kohn-Sham
equations: fixed-point iterations

« The Hamiltonian depends on the electronic
density

(—AQ, +V(0,1)p. = &0 i—l...Nel

V(p.,r)=V,, )+ f L dr' + Vi (p(6), Vp(E)

r-r]

p(r) = E|¢,. o)

[¢:@)¢,(r)dr =5,
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Self-consistent iterations

e For k=1,2,...
- Compute the density p,
- Solve the Kohn-Sham equations

e The iteration may converge to a fixed point
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Simplifying the electron-ion
interactions: Pseudopotentials

e The electron-ion interaction is singular
Ze’
r-R
e Only valence electrons play an important role
in chemical bonding

‘/e—ion (r) ==

core electrons

Valence electrons

i
o
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Simplifying the electron-ion
interactions: Pseudopotentials

e The electron-ion potential can be replaced by a
smooth function near the atomic core

_2&2
‘/e—ion (r) = ‘r - R‘
\f(‘r—R‘) r-R|<r,

‘r—R‘>rC

ut

ut

e Core electrons are not included in the
calculation (they are assumed to be "frozen")
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Pseudopotentials: Silicon

e Solutions of the Schrodinger equation for Si
including all electrons (core+valence):

UNIVERSITY OF CALIFORNIA
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Pseudopotentials: Silicon

e Solutions of the Schrodinger equation for Si
including all electrons (zoom on core region):
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Pseudopotentials: Silicon

e The electron-ion potential can be replaced by a
smooth function near the atomic core

|
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Summary: First-principles
electronic structure

e Time-independent Schroedinger equation
e Mean-field approximation

e Simplified electron-electron interaction:

- Density Functional Theory, Local Density
Approximation

e Simplified electron-ion interaction:
- Pseudopotentials
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Molecular dynamics:
Computation of ionic forces

e Hamiltonian: H(1)

e Hellman-Feynman theorem: if y (1) is the
electronic ground state of H(A)

ok
aAl, oA
e For ionic forces: A=R, (ionic positions)

9 W HM |1y (1) = (s ;LO)‘GH (A)

¥, (A))
A

E=———<wo\ \wo> <%\—E on (=R
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Integrating the equations of
motion: the Verlet algorithm

e The equations of motion are coupled, second
order ordinary differential equations

o Any ODE integration method can be used
e Time-reversible integrators are preferred

e The Verlet algorithm (or leapfrog method) is

time-reversible
2

x(t+At)=2x(t)-x(t+At)+ A F(x(2))
m
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Integrating the equations of
motion: the Verlet algorithm

e Derivation of the Verlet algorithm: Taylor
expansion of x(t)

dc At° d’x Ar d’x A
xX(t+At)=x(t)+ At —+ + + O(At
( )= (1) dt 2 dr 6 dt (A7)
dc At d°x At d’x 4
x(t=At)=x(t)-At—+ — + O(At
( )= x(0) d 2 d* 6 dt (A7)

e Add the two Taylor expansions:

2

x(t+ A1) +x(t - A) =2x(¢) + At % +O(At)
l
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Integrating the equations of
motion: the Verlet algorithm

e use Newton’s law

md—;=f(x(t))

2
x(t+ A +x(t—At) =2x(1) + AL’ % +O(At)
t

2

x(t+A8)=2x(t)-x(t - At) + A F(x(2))+O(AtY)
m
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First-Principles Molecular Dynamics

Molecular Dynamics Density Functional Theory
I ¥
d2 (—A+I/eff)(pi(X)=8i(pi(X)
m, _2Ri =K FPMD L >
dt =
p(x)= 2o
1\ i=1

Newton equations Kohn-Sham equations

R. Car and M. Parrinello (1985) MlccoM 46
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FPMD: the Recipe

e Choose a starting geometry: atomic positions
e Choose an exchange-correlation functional
e Choose appropriate pseudopotentials

e Run!
e Publish!!

MICCoM .



FPMD: the Recipe

e Choose a starting geometry: atomic positions
e Choose an exchange-correlation functional
e Choose appropriate pseudopotentials

e Run!
e Test!

- Test sensitivity to starting geometry, finite size effects
- Test sensitivity to duration of the simulation
- Test accuracy of the basis set
Test choice of exchange-correlation functionals

oo : M|CCOM 48
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Electronic properties:
Polarization

e The electronic polarization (per unit cell) of an
infinite periodic system is ill- cefmed

I —eEZR +frp(r) dr

O|0 PO|O P
O|0 O[O P
O00O0O0

o
O
O
O
- P depends on the choice of origin

e The change in polarization caused by a small
perturbation is well defined

e The electric current caused by a perturbation

(e.g. a deformation) can be computed

R. Resta, Rev. Mod. Phys. 66, 899 (1994).
AT L MlCCOM 49



Electronic properties:
Polarization

e The electronic polarization (per unit cell) of an
infinite periodic system is ill-defined,

¥
=§__62

- P depends on the choice of origin

e The change in polarization caused by a small
perturbation is well defined

e The electric current caused by a perturbation

(e.g. a deformation) can be computed
R. Resta, Rev. Mod. Phys. 66, 899 (1994).

r)dr

0000

O|0 PO|O P
O|0 O[O P
O00O0O0
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Wannier functions

o A set of localized orbitals that span the same
subspace as the Kohn-Sham eigenvectors

- minimize the spread o~ = <¢‘(x — <¢‘x‘¢>)2 ‘¢>
« Wannier centers: centers of charge of each
Wannier function

e Polarization can be expressed in terms of the

centers | I |
= o __eZZlRZ + e;frwn (r) dr-

N. Marzari, A. Mostofi, J. Yates, |. Souza and D. Vanderbilt, Rev. Mod.

Phys. 84, 1419 (2012). MICCoM -,
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Time-dependent polarization of

nanoparticles
e PBE DFT MD 300K

i

|

e dt=1.9 fs
2 r
1.5 F
1.
0,5
0 A all
=
o
= -0,5
[
Fl
b= -1 f
-1,5 }
_2.
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IR Spectroscopy

e IR spectra during MD simulations
e Autocorrelation function of P(t)

o)l (Zrorrop
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Raman Spectroscopy

e Compute the polarizability at each MD step

- Use Density Functional Perturbation Theory (Baroni,
Giannozzi, Testa, 1987)

- Use a finite-difference formula with P(t) and finite
field

MICCoM ..
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On-the-fly Computation of

Raman spectra

g Isotropic (DZO ) 64
= — Calc.
S — exptl 283K
z exptl 303K
E) — expt2 293K
fen) -

1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1 1 1 1 I 1
‘_5, Anisotropic
o
El expt3 278K H,O
> — expt3 308K H,0
% f\,\
é \\_ — J

I 1 1 1 T 1 1 T T 1
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Wavenumber [cm ]
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Position of O-D stretching
band: PBE functional yields a
red shifted peak, compared
to expt.

Low frequency bands:
satisfactory agreement with

expt.

Peak Intensities in good
agreement with expt.

Q. Wan, L. Spanu, G. Galli, F. Gygi, JCTC 9, 4124 (2013)
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Solving the Kohn-Sham equations in a
finite electric field

e In finite systems: add a linear potential
2

H. =Y +V(r)-eEx
2m

e The spectrum is not bounded below (no "ground
state”)

e In periodic systems: define the electric
enthalpy:

Flo|=Ex|¢]-QP[¢] E
|. Souza, J. Iniguez, D. Vanderbilt, Phys. Rev. Lett. 89, 117602 (2002).
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51(100):H-H,0 interface

DFT MD of the Si/H,0 interface under finite field
Si(100)-(3x3):H-H,0, canted dihydride surface
termination, 116 water molecules

Analysis of time-dependent polarization
Comparison with IR spectra

L. Yang, F. Niu, S. Tecklenburg, M. Pander, S. Nayak, A. Erbe,

~menwrne . Wippermann, F. Gygi, G. Galli
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Validation of DFT: PBE vs PBEOQ vs ...

« Oxygen-oxygen pair correlation function in (H,0)s;

4
————— PBE (439:29K) - .
————— PBE (367+25K) . -
PBEQ (438+29K) ~ ] B
PBEO (374£27K) 82— n

=11

Exp (300K) d B
- B
i B
0—— B

2

r(A)

C.Zhang, D.Donadio, F.Gygi, G.Galli, JCTC 7, 1443 (2011) bM 58
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Is my simulation reproducible?

e D,0 power spectrum of ionic velocities (32 x 10 ps runs)

0.25

0.2

0.15

o
—

intensity (arb. units)

0.05

| | | -
2000 2200 2400 2600 2800 3000
frequency(cm'1)
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Validating/comparing levels of
theory

Need for (quantitative) statistical analysis
- compute confidence intervals

An accurate determination of structural and electronic
properties requires multiple uncorrelated simulations

Autocorrelation times may vary for different quantities
Example: the PBE400 dataset

- First-principles MD simulations of water
- http://www.quantum-simulation.org/reference/h2o/pbe400
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Summary

e Basic features of FPMD %

e Approximations of electronic structure
calculations

e Extensions: polarization, finite electric
field

e IR, Raman spectroscopy

Next FPMD steps: »_
« Today 10:30 am: Qbox tutorial S\ 8
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