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Computational Spectroscopy
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A modular strategy for innovation
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A modular strategy for innovation
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A modular strategy for innovation
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Structural models derived with the aid of DFT and
first principles molecular dynamics (FPMD)

Spectroscopic signatures
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* To understand & predict light-
matter & external field interaction
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Structural models derived with the aid of DFT and
first principles molecular dynamics
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Structural models derived with the aid of DFT and
first principles molecular dynamics
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Structural models derived with the aid of DFT and
first principles molecular dynamics (FPMD)

A Spectroscopic signatures

16 1 O MR, =F, 4 R
2t | F=-V, E@R®Y i '

Computational spectroscopy is key
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E from DFT  To validate atomistic structural
models by comparing with
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* To understand & predict light-
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Spectroscopy on MD samples using Many Body
Perturbation Theory

* Development of post-DFT theories for spectroscopic characterization of materials is key to
prediction and design of new systems & properties

= Spectroscopic Characterization
Processes of = Bﬁnd edg;a ¢ Light
interest alighmen absorption by o
1 between RN oo a ™\ * Photoemission
electrodes Many BOdy  Absorption
~—J and water » X-ray photoemission
Perturbation « Photoluminescence
i UV-vis and * Deep level transient
Phot :
Experiments « gcfrz:l_l;smn GW ellipsometry BSE Theory spectroscopy
P R spectroscopy K / » Ultrafast spectroscopy
* Non-radiative

recombination

H. Wilson, F. Gygi, and GG, PRB 2008; H.Wilson, D.Lu, F.Gygi and GG, PRB 2009; H. V. Nguyen, T.A. Pham, D.Rocca and GG PRB (R) 2012;D.Rocca, D.Lu and GG, JCP 2010; T.A.Pham,
H,V.Nguyen, D.Rocca and GG, PRB 2013; M.Govoni & GG, JCTC, 2015 & 2018; P.Scherpelz, .Hamada, M.Govoni and GG, JCTC 2017; R.McAvoy, M.Govoni and GG, JCTC 2018; Nguyen et al.
PRL 2019; Ma He et al, JCTC 2019 and JCTC 2020; S.Dong, M.Govoni & GG, Chem.Sci. 2021; H.Yang, A.Kundu, M.Govoni and GG, JCTC 2021



Computational Spectroscopy

Why is it useful?
Why is it interesting?
Which problems does it help us solve?



Multi-faceted processes and complex materials

-

Can we design
easy to make and
cheap solar cells

using colloidal

guantum dots?

\_

/ How can we trigger
desired photo-reactions
to generate clean fuel at ﬁ

the interface of photo- ’#.;l "

absorbers, catalysts and

\_ water?

R How do we design
s hl ffffff efficient all organic
7 light emitting
diodes (OLEDs)?

\

Which materials are\
suitable for energy-
efficient
neuromorphic
platforms and low
power electronics y




Multi-faceted processes and complex materials
4 N\

Harness the power of
guantum information:
»| ¢ Computing

* Sensors

e Communications

Can we predict solid
state and molecular
systems to realize spin-
qubit for quantum
technologies?

e Use electronic states of defects as two-
level systems

* Optically address the two-level systems
*Optical transition from ground to an excited state,
followed by a spin-selective decay path with nonradiative
transitions between states of differing spin multiplicity




Multi-faceted processes and complex materials
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* Heterogeneous systems with interfaces, defects and complex building
blocks

* Interaction of matter & light and matter & external fields



A difficult problem with many components
Simulations and predictions of numerous properties

//Reasonable model of
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e Atomistic model of
solid/liquid interfaces

and Schottky barriers )

Charge transport
@interfaces

(FPMD) & their electronic
properties ( band offsets

~

/

ImeM

Absorption
spectra of the
solar absorber

Eg 22V

N waE— L ¢

s
< ‘ »

M,
’ ¢ &9

S
e 2
A %
calk;

§ -J X ('\ - :;+
N

\yr .4~|

A -4 )f
(N

_,."? J 7
o' b !

vr; PBE PBEO

'

il
11| |

ﬁ? A et

2
R RE
lq

Semicon. \
PN Ec

al




Spectroscopy on MD samples

Use first principles MD trajectories and compute electronic properties from many
body perturbation theory - Electronic properties at finite T w/statistical errors

e |
Processes of " Bz?nd e 3 i
orost legnment absorption by
| between e & electrodes
electrodes
and water
& & UV-vis and

. . Photoemission GW ellipsometry BSE
xperiments spectroscopy spectroscopy

Single particle Green’s
Theory functions G poles
represent energies to
add or remove an
electron from a solid or
molecule

Two particle correlation
function L: poles
correspond to neutral
excitation energies of
interacting electrons

Dyson’s equation: relates G('to | Bethe Salpeter equation:
self energy X (effective potential | relatesL to the variation of
of interacting electrons) = with respect to G

Equations




Solution of the Hedin’s equations

(T + f/z'on + VH + Vazc) |¢n> = €En |¢n> DFT

(7 + Vion + Viz + S(BS) ) [¥27) = BIP |[y2F)  meeT

> expressed in terms of the dynamically screened Coulomb potential

(r,r’;w) :/%G(r,r';w+w’)W(r,r’;w')

1
')

rrw
w_
O/ )

Use an expression in terms

of
Kohn-Sham electronic
states from density-density
response functions
or
From DFT calculations in
electric field

EZ" =en® + (¢n

S(EZT) = Vae [¥n °)

L. Hedin, Phys. Rev. 139, A796 (1965)




Back to basics of the classical world:
Maxwell equations for the total field

* Maxwell equations: Q = -e; n = density

1dB s
v X E(t) TS r ' utonul-on?on
V- -E =47mQn o dt
x B(t) ~it o
. dn
V-j= —QE

. ‘rnal and External charges and currents:
* N =Nige + Neyos | = Jine  Jext

* Polarization : defined to within an additive constant (one computes
polarization differences)

V- P(r,t) = —Qnin (1, t)

t
P(r,t) = / dt’ jing (v, '




Maxwell equations for the external field

* D=E+4TTP D = external field, independent of the material

1dB
U D = 4r@nea ¥ B0 = "y
4 1dD

V-B=0

VXB(> jext"‘

¢ dt

* Relation between current and total field and density and total field

i
Jint (T, 1) = /dr’/ o(r,v’ t —t"E(r', ¢

i () = / ar'o (.1, w)E,w

D(r,w) = /dr’e(r,r’,@(r’,w)

E(r,w) = /dr’e_l(r,r’,w)D(r’,w

Response to the external field D

4
or —r')+ —o(r,r,w
,




Response in terms of scalar potentials

e E= - VV(F) . field derived from potential > in Fourier space: E(q) =iq V(q) is longitudinal (|| to q)

6_1((] q w) = 5Vt€ta1(qaw) e(q, q’,w) _ O Vext (qQ, w)
T 5‘/@(’6 (q/7 w) 6‘/Zggtal(q/7 LU)
External potential Coulomb potenLal

 How do we compute the dielectric response?

* Derive an expression of the direct and inverse dielectric response in terms of single
particle (Kohn-Sham) electronic states y; from density response functions



Static density response function

* Response of the electrons to a variation of the total potential atr’

(5Veﬂr — €

Xn(r r) 22 Z )w*( ibi(x')

7 7
Definition Perturbation theory
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1=1

Independent particle Green function

Gi(r,r') = Z %’i"w;(r )
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Response in terms of scalar potentials

e E= - VV(F) . field derived from potential > in Fourier space: E(q) =iq V(q) is longitudinal (|| to q)

6_1((] q w) = 5Vt€ta1(qaw) e(q, q’,w) _ O Vext (qQ, w)
T 5‘/@(’6 (q/7 w) 6‘/Zggtal(q/7 LU)
External potential Coulomb potenLal

 How do we compute the dielectric response?

* Derive an expression of the direct and inverse dielectric response in terms of single
particle (Kohn-Sham) electronic states y; from density response functions



Calculation of dielectric matrices

Within the RPA approximation (f,. = 0)

Are? 4 (v, kle7atG) T k + q) <c, k + q|e'(aFE) Ty, k>
[a+ G2 N2 =

€c,c’(q) = da,a/ — Eyx — Eeiy
U’ C’ q

,C

Similarity transformation to a Hermitian matrix:

Eigenvalues of the dielectric matrix are real and greater than or equal to 1

Direct, straightforward calculation of dielectric matrices is
prohibitive for large systems



Spectral decomposition

* Represent polarizability by its eigenvalue decomposition and truncate sum over
eigenvalues to an appropriate, small number

N N -
XOZZ@)\W@H_' X:Z@l_)\igbi
i=1 RPA  i=1

* Once this eigenvalue decomposition is known, computing € is trivial
N

'é:' di (1 —N;) p g—lzi@( As +1>€Ef[
i=1

1=1 1 — >\z

H.Wilson, F.Gygi and G.Galli, PRB 2008; H.Wilson, D.Lu, F.6ygi & GG, PRB 2009

 Compute eigenvalues and eigenvectors using Density Functional Perturbation
Theory*(DFPT) = avoid costly calculation of empty single particle states

(*) S. Baroni, et al., Rev. Mod. Phys., 73:515, 2001.



Calculations of dielectric matrices:
spectral decomposition & DFPT

Neig

_ \s -
1 = ; : 1) o
=3 (Hﬁ )@

- Calculation of empty electronic states, calculation and storage of
full dieletric matrix and inversion of € are avoided

» Scaling: N, N,,N,? (instead of N,,,“N,N,)

- Efficient evaluation of é~at different q points and at different MD
steps is possible

H. Wilson, F. Gygi, and G. G., PRB 2008; H.Wilson, D.Lu, F.Gygi and G.G., Phys.Rev.B 2009; V. H.
Nguyen, S. de Gironcoli, Phys.Rev.B 2009, M.Govoni & GG, J. Chem. Theory Comput., (2015)



Low rank decomposition of the
screened Coulomb interaction W

In Hartree Fock

<wz¢g 5 ) er mols
Direct space  Size~(250) x (250)

Difficult to truncate
Reciprocal Reciprocal space size~(1’000°000) x (1’000°000)
space :

Could be truncated, full matrix

Example : 64 water molecules

In GW Eigenpotential space size~(1'000) x (1°000)
(Yihi| W (x,r") [vrihr) W Z @) A, (o] Low-rank decomposition
EEEE

Reciprocal
space

Wa,c I ’ b. Separable form




Summary of GW algorithm

lterative diagonalization of the dielectric matrix *) >

Low rank decomposition of W

DFPT () based projection techniques to compute G
Eigenpotentials of € as basis set also at finite frequency ¢*+*)

Lanczos algorithm to compute frequency dependence of
dielectric matrix in parallel

Contour deformation technique for frequency integration (&)

(*) S. Baroni, et al., Rev. Mod. Phys., 73:515, 2001.

(+) H. Wilson, F. Gygi, and G. G., PRB 2008; H.Wilson, D.Lu, F.Gygi and G.G., Phys.Rev.B 2009
(++) H. V. Nguyen, T.A. Pham, D.Rocca and GG Phys. Rev. B (R) 2012; T.A.Pham, H,V.Nguyen, D.Rocca and GG, Phys.Rev.B

2013

(&) M.Govoni & GG, J. Chem. Theory Comput., (2015) & J.Chem.Theory Comp. (2018).



Implementation of GW algorithm

16 %S -
»
14 \(’Q&"
12 \6“”3' o
10 | | COOH-siH20 A 4
§ o |l | 5 . Eliminated summations
@ 16 BG/Q racks| .
g P et over empty states using
£
.- oo oo DFPT
. | ofErrrTn
2 8570 rocics -
° 0 100000 200000 300000 400000 500000 600000 * W made separable USIng
#BO/Q cores the eigenvectors of the
Range of applicability - . . .
Ordered and disordered solids, 1 OHUHNTUM dleleCtrIC matrlx das baSIS
deflecti\fe materiellls, liquids, set; number of
molecular crystals, . .
nanostructures, interfaces i elgenpotentlals controls
Govoni&GG, JCTC 2015, JCTC

the accuracy of the
method.

2018

« Greatly reduced pre-
factors of O(N#) scaling

West is available for download under the

E1f3 www.west-code.org scalable to > 500,000 cores




Absorption of light: solving the
Bethe Salpeter equation (BSE)

Quantum Liouville equation

'id/(j](::) = [0).5(0) e The quantum Liouville
equation is solved within
H(t)b(r,t) = [—%v? ton(et) + l,m‘t(l._t)] b(r. ) linear response theory
i /‘)(F,‘t)dr, e Explicit calculation of empty
- | electronic states is avoided
f by using iterative diag. of ¢
Ycou(r,r') = %‘5(1‘—1‘/)”"})(1‘/-1',) BSE
Sspx(rr',t) = =) ou(r,t)¢; (' W (', r) D. Rocca, D. Lu, and G. Galli, JCP (2010)
v A D. Rocca, Y. Ping, R. Gebauer, and G. Galli, PRB (2012)

. | . D. Rocca, R. Gebauer, Y. Saad, and S. Baroni, JCP (2008)
Screened Coulomb interaction B. Walker, R. Gebauer, A. M. Saitta, and S. Baroni, PRL

(2006)



Addressing existing drawbacks

Develop efficient and scalable algorithms to go beyond the
random phase approximation (RPA), which are ‘easily’
applicable to hybrid DF T wavefunctions and lead to improved

efficiency

Strategy:

« Afinite field algorithm to compute
the density-density response

function
* DFT calculations performed by
Qbox exploiting:
* Fast hybrid functional
calculations with controllable

accuracy
 Client-server mode

RPA: .. =

Ovxc[n]
on

~ 0

He Ma, M. Govoni, G.Galli & F.Gygi JCTC 2019, PRL 2019



Finite temperature optical spectra

.. First Principles Molecular Dynamics
We developed an efficient solver of the Bethe-Salpeter

Ry
Equation (BSE), based on a finite field approach (unique 0 #1 #2 4
to WEST)™: - F\/M/\/\"W
£, ) o ® 5 ) '
* WEST-Qbox coupling to avoid direct calculation of S\ Dt [Toiga”
dielectric matrices and overcome commonly used | LY e8| )\ o7

approximations (e.g., Random Phase Approximation) ! !
@%ﬂﬁl‘!) @El:(\mﬂ) @jm'm

@ Q- 1

* Reduced workload by harnessing orbital localization w/ | | ;
the recursive bisection method (unique to Qbox) ¥ BSE Sflution ¢
We computed optical spectra at finite T (e.g. liquid water 2
and ice), where BSE is solved for several snapshots % .<
extracted from MD trajectories. é I\Cz:;nga;
*L. Nguyen, H.Ma, M.Govoni, F.Gygi, G.Galli, PRL 122, 237402 (2019) §

Energy



Data driven approach to obtain
the dielectric screening

= |dentified a machine learning protocol to avoid
redundant calculations of the dielectric screening

= “Learn” on-the-fly and use a data-driven model for the
dielectric response = speedup 100x

} \screened

Coulomb Coulomb
interaction s~  Convolutional interaction
b layer

Tensor

S.Dong, M.Govoni, G.Galli, Chem. Sci. 12, 4970 (2021)

* A strategy to represent physical quantities in electronic
structure theory using ML

e Future work: use similar concept to derive improved
density functionals for interfaces

First Principles Molecular Dynamics
&
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Some open questions

* 'Everything’ relies on ‘DFT ground states which DFT?
* Which functional for interfaces? \

* How do we optimize geometries of excited states and deal with conical
intersections?

e Can we ‘recycle’ quantities that are computed many times in electronic
structure calculations? Can we ‘learn’ them and ‘extrapolate’ them? (e.g.
dielectric matrices) ?

* What's the future of Many-Body-Perturbation-Theory?

» Self-consistency? ‘Additional’ diagrams ? Use instead quantum chemistry methods
for excited states also in the solid state? Role of Quantum Monte Carlo (QMC)?



