





# Simulation of Photoluminescence Spectra

Speaker: Yu Jin

**MICCoM Workshop** 

10/14/2022

#### Introduction

Motivation: Materials characterization requires the ability to simulate **photoluminescence (PL) spectra** 



Main focus: first-principles strategies to study PL spectra of large solid-state systems

- Theory and First-principles Methodology
- Photoluminescence of All Inorganic Perovskites
- Photoluminescence of Point Defects in Semiconductors
- Summary and Outlook

#### **Physical Processes and Approximations**



Configuration Coordinate

• Fermi's golden rule

$$I(\hbar\omega,T) \propto \sum_{m,n} P_m(T) \left| \left< \Phi_m \right| \hat{V} \left| \Phi_n \right> \right|^2 \delta(\hbar\omega + E_m - E_n)$$

• Electric-dipole approximation, Born-Oppenheimer approximation, Franck-Condon (FC) approximation



- Franck-Condon (FC) shift:  $E_{\rm FC} \approx \frac{1}{2}\omega^2 \Delta Q^2$
- Huang-Rhys factor (HRF):  $S = \frac{E_{FC}}{\hbar\omega} = \frac{\omega\Delta Q^2}{2\hbar}$

# PL with Weak Electron-Phonon (EI-Ph) Coupling

#### Weak electron-phonon coupling: $S \approx 0$



Example systems: pristine solids with delocalized excitons

$$I(\hbar\omega, T) \propto \left| \boldsymbol{\mu}_{\text{ES,GS}} \right|^2 \delta(\hbar\omega - E_{\text{ZPL}})$$

- Narrow PL line shape
- Same peak position for absorption and PL



L. Protesescu et al., Nano Lett. 15, 3692 (2015).

4

# PL with Strong El-Ph Coupling

#### Strong electron-phonon coupling: $S \gg 1$



$$\begin{aligned} \widehat{I(\hbar\omega,T)} \propto \left|\boldsymbol{\mu}_{\mathrm{ES,GS}}\right|^{2} \sum_{m,n} P_{m}(T) \left|\left\langle X_{\mathrm{ES},m} \left| X_{\mathrm{GS},n} \right\rangle\right|^{2} \times \\ \delta\left(\hbar\omega + E_{\mathrm{GS},n} - E_{\mathrm{ES},m} - E_{\mathrm{ZPL}}\right) \end{aligned}$$

Example systems: defects and self-trapped excitons in "soft" solids

- Broad PL line shape
- Different peak positions for absorption and emission



# PL with Strong EI-Ph Coupling

#### 1D configuration coordinate diagram (CCD)



- 1. Optimize ground state (GS) and excited state (ES) geometries
- 2. Build the **1D CCD** as a **linear interpolation** between the GS and the ES geometries and calculate the energy profiles

$$\Delta Q = \left[\sum_{\alpha i} M_{\alpha} \Delta \boldsymbol{R}_{\alpha i}^{2}\right]^{1/2}$$

3. Calculate the **effective phonon modes** and the **Huang-Rhys factor (HRF)** 

$$\hbar\omega_{\rm GS}, \qquad \hbar\omega_{\rm ES}, \qquad S = \frac{\omega_{\rm GS}\Delta Q^2}{2\hbar}$$

4. Compute the **FC integrals** and the PL

 $I_{mn} = \langle X_{\text{ES},m}(Q-\Delta Q) | X_{\text{GS},n}(Q) \rangle$ 

P. T. Ruhoff, Chem. Phys. 186. 355 (1994).

### PL with Intermediate EI-Ph Coupling

#### Intermediate electron-phonon coupling: $S \approx 1$



P. Kehayias et al., Phys. Rev. B 88, 165202 (2013).



$$\begin{aligned} I(\hbar\omega, T) \propto \left| \boldsymbol{\mu}_{\text{ES,GS}} \right|^2 \sum_{m,n} P_m(T) \left| \left\langle X_{\text{ES},m} \right| X_{\text{GS},n} \right\rangle \right|^2 \times \\ \delta(\hbar\omega + E_{\text{GS},n} - E_{\text{ES},m} - E_{\text{ZPL}}) \end{aligned}$$

Example systems: point defects in "rigid" solids

- **Multidimensional** nuclear wavefunction in  $|X_{\text{ES},\{m\}}\rangle = \prod_{k} |\chi_{\text{ES},km_{k}}\rangle, \quad |X_{\text{GS},\{n\}}\rangle = \prod_{k} |\chi_{\text{GS},kn_{k}}\rangle$
- Displaced harmonic oscillator approximation

$$\hbar\omega_{\mathrm{ES},k} = \hbar\omega_{\mathrm{GS},k}$$

$$|\langle \chi_{k0}(Q_k - \Delta Q_k)|\chi_{kn}(Q)\rangle|^2 = \frac{S_k^n}{n!} \exp(-S_k)$$

• Partial Huang-Rhys factor (HRF):  $S_k = \frac{\omega_k \Delta Q_k^2}{2\hbar}$ 

### PL with Intermediate EI-Ph Coupling

#### **Generating function approach for PL line shape**



Energy of the zero-phonon line (ZPL)  

$$I(\hbar\omega) \propto \frac{1}{2\pi\hbar} \int_{-\infty}^{\infty} \exp\left(i\omega t - \frac{iE_{\text{ZPL}}t + \lambda|t|}{\hbar}\right) G(t) dt$$
Broadening of the ZPL

Generating function

$$G(t) = \exp[S(t) - S(0)]$$

• Spectral density of electron-phonon (el-ph) coupling

$$S(\hbar\omega) = \sum_{k} S_k \delta(\hbar\omega - \hbar\omega_k)$$

P. Kehayias et al., Phys. Rev. B 88, 165202 (2013).

### PL in Different EI-Ph Coupling Regimes



- Theory and First-principles Methodology
- Photoluminescence of All Inorganic Perovskites
- Photoluminescence of Point Defects in Semiconductors
- Summary and Outlook

### Self trapped exciton and broadband PL



K. E. Knowles et al., J. Am. Chem. Soc. 137, 13138 (2015).

After absorbing the light free exciton is relaxed (stabilized) into a **self trapped exciton (STE)**  Cs<sub>2</sub>AgInCl<sub>6</sub>



Systems with STE exhibit **broadband PL** and large Franck-Condon shifts

Potential application: leadfree white light source



J. Luo et al., Nature 563, 541 (2018).

## **First-principles Calculations**

- 1. Build the structural model for the perovskite
  - supercell with periodic boundary condition
- DFT study of the ground state (GS) 2.
  - **GS** atomic geometry •
- CDFT ( $\Delta$ SCF) or ROKS study of the excited state (ES) 3.
  - **ES atomic geometry** and **E**<sub>ZPI</sub> ۲
- Build the **1D configuration coordinate diagram (CCD)** 4. between the GS and the ES geometries
  - Atomic displacement
  - **Effective phonon modes** •
- 5. Compute the **FC integrals** and the PL

J. Luo et al., Nature 563, 541 (2018). X. Wang et al., J. Phys. Chem. Lett. 10, 501 (2019).



#### 1D CCD and the Broadband PL

The broad PL from the **self-trapped exciton** originates from the **strong electron-phonon coupling** 

| Δ <i>Q</i><br>(amu <sup>0.5</sup> Å) | ħω <sub>GS</sub><br>(meV) | ħω <sub>ES</sub><br>(meV) | S <sub>GS</sub> | S <sub>ES</sub> |
|--------------------------------------|---------------------------|---------------------------|-----------------|-----------------|
| 4.35                                 | 18.3                      | 17.4                      | 37              | 30              |



J. Luo et al., *Nature* 563, 541 (2018).X. Wang et al., *J. Phys. Chem. Lett.* 10, 501 (2019).

- Theory and First-principles Methodology
- Photoluminescence of All Inorganic Perovskites
- Photoluminescence of Point Defects in Semiconductors
- Summary and Outlook

### PL of Point Defects in Semiconductors

**Optically active point defects** in semiconductors are potential platforms for quantum technology applications



## **First-principles Calculations**

- 1. Build the structural model for the defect
  - supercell with periodic boundary condition
- 2. DFT study of the ground state (GS)
  - GS atomic geometry
  - All phonon modes
- 3. CDFT ( $\Delta$ SCF) or TDDFT study of the excited state (ES)
  - ES atomic geometry
  - Energy of the **zero-phonon line**: *E***<sub>ZPL</sub>**
- 4. Compute PL using the **generating function approach**

Y. Jin, M. Govoni et al., Phys. Rev. Mater. 5, 084603 (2021).

NV<sup>-</sup> center in a  $(4 \times 4 \times 4)$ supercell of diamond with 512 atomic sites





#### PL Line Shape of NV<sup>-</sup> in Diamond



- 1D CCD can't capture the details of the PL line shape
- The PL line shape predicted using all vibrational modes are in better agreement with the experiment

#### • Finite size effects

- Underestimate of intensity at around -20 meV
- Shoulder peaks around -50 meV

### Extrapolating to the Dilute Limit

$$\Delta Q_k = \frac{1}{\omega_k^2} \sum_{\alpha=1}^N \sum_{i=x,y,z} \frac{F_{\alpha i}}{\sqrt{M_\alpha}} \boldsymbol{e}_{k,\alpha}$$



#### Force constant matrix (D) embedding approach

- If both atoms are within the sphere, then the matrix element of the small defect supercell is used
- If two atoms are separated by a distance larger than a chosen cutoff radius, then the matrix element is set to zero
- For all other atom pairs, the values of the pristine bulk system is used



A. Alkauskas et al., New J. Phys. 24, 073026 (2014). L. Razinkovas et al., Phys. Rev. B 104, 045303 (2021).

### Spectral Density of EI-Ph Coupling

Total Huang-Rhys factor (HRF)

$$S = \sum_{k} S_{k} = \sum_{k} \frac{\omega_{k} \Delta Q_{k}^{2}}{2\hbar}$$

Spectral density of electron-phonon coupling

 $S(\hbar\omega) = \sum_{k} S_k \delta(\hbar\omega - \hbar\omega_k)$ 

For NV<sup>-</sup> center in diamond, extrapolating to the dilute limit

- smooths the spectral density
- includes the contribution of long-range phonons



#### Vibrational Modes Analysis





The agreement between the theoretical and experimental PL line shapes is significantly improved by extrapolating to the dilute limit

- Phonon side band dominates by the coupling with the 65 meV quasi-local vibrational mode
- Detailed features at ~ 125, 140, 155 and 165 meV are correctly predicted
- Contributions of long-range phonons are included

#### **Comparison of Different Functionals**



| Debye-Waller factor: DWF $\approx \exp(-S)$ |                       |                |                |                |        |       |  |  |
|---------------------------------------------|-----------------------|----------------|----------------|----------------|--------|-------|--|--|
|                                             | <b>ΡΒΕ-Δ</b> <i>Q</i> | DDH-ΔQ         |                | HSE-∆Q         |        | Evet  |  |  |
|                                             | PBE- <i>ph</i>        | PBE- <i>ph</i> | DDH- <i>ph</i> | PBE- <i>ph</i> | HSE-ph | εχρι. |  |  |
| DWF (%)                                     | 5.0                   | 4.1            | 3.7            | 3.0            | 2.5    | 3.2   |  |  |
|                                             |                       |                |                |                |        |       |  |  |

- Energies of PBE phonons are in the best agreement with the experiment
- HSE predicts the relative intensity the best
- HSE-ΔQ with PBE-ph yields the line shape and the DWF in the best comparison with the experiment

P. Kehayias, D. Budker et al., *Phys. Rev. B* 88, 165202 (2013).Y. Jin, M. Govoni et al., *Phys. Rev. Mater.* 5, 084603 (2021).

Temperature effect can be included through the **average occupations** of vibrational levels in the excited state

$$F(t,T) = \exp[S(t) - S(0) + C(t,T) + C(-t,T) - 2C(0,T)]$$
$$C(\hbar\omega,T) = \sum_{k} \overline{n}_{k}(T)S_{k}\delta(\hbar\omega - \hbar\omega_{k})$$

ZPL broadening as a function of temperature







## Absorption between Singlet States



P. Kehayias et al., Phys. Rev. B 88, 165202 (2013).

 Geometries and vibrational modes of the strongly-correlated <sup>1</sup>A<sub>1</sub> and <sup>1</sup>E states are studied using spin-flip TDDFT with analytical nuclear gradients implemented in the WEST code

- Theory and First-principles Methodology
- Photoluminescence of All Inorganic Perovskites
- Photoluminescence of Point Defects in Semiconductors
- Summary and Outlook

# Summary

#### PL spectra of solid-state systems can be characterized using first-principles approaches

#### Light emitting all inorganic perovskites

- Formation of self trapped exciton (STE)
- **1D** configuration coordinate diagram (CCD)

J. Luo et al., *Nature* **563**, 541 (2018). X. Wang et al., J. Phys. Chem. Lett. 10, 501 (2019).





1.0

PL

units)

#### Point defects in semiconductors

- Coupling between the optical transition and all vibrational modes
- **Generating function approach** for the line shape at finite temperature
- **Force constant matrix embedding approach** for finite-size effects

Y. Jin, M. Govoni et al., Phys. Rev. Mater. 5, 084603 (2021). Y. Jin, M. Govoni, and G. Galli, arXiv:2208.04504 (2022).

#### Outlook

#### Future work: method development for excited state potential energy surfaces



Methods based on DFT (CDFT, TDDFT)

- More rigorous treatment of excited states
- More accurate density functionals

Methods based on many-body perturbation theory (*GW*-BSE, QDET)

• Implementation of analytical nuclear forces

#### Quantum chemistry methods

- Implementation with periodic boundary condition
- Reducing the computational cost to enable calculations for large systems

#### Outlook

#### Future work: beyond the approximations in the calculation of PL spectra

Non-Born-Oppenheimer effect and the anharmonicity

BO:  $|\Phi_m\rangle = |\Psi\rangle|X_m\rangle$ Non-BO:  $|\Phi_m\rangle = \sum_i (c_{mi}|\Psi_1\rangle|X_i\rangle + d_{mi}|\Psi_2\rangle|X_i\rangle)$ 





Y. Jin, M. Govoni, and G. Galli, arXiv:2208.04504.
G. Thiering and A. Gali, *Phys. Rev. B* 98, 085207 (2018).
L. Razinkovas et al., *Phys. Rev. B* 104, 045303 (2021).

### Outlook

#### Future work: beyond the approximations in the calculation of PL spectra





#### Acknowledgement





Dr. Gary Wolfowicz Dr. Sean Sullivan Dr. F. Joseph Heremans







National Energy Research Scientific Computing Center



Office of Research and National Laboratories Research Computing Center