MIDWEST INTEGRATED CENTER FOR COMPUTATIONAL MATERIALS

http://miccom-center.org

The Committee of the Committee of

Topic: Continuum-Particle Simulation Software (COPSS-Hydrodynamics)

Presenter: Jiyuan Li, The University of Chicago

2017 Summer School ¹

What is Continuum-Particle Simulation?

- Continuum simulation (Grid-based) solves Partial Differential Equations on discretized grids or meshes (Finite element method, Finite difference method, Boundary element method, *etc.*)
- Particle simulation (Particle-based) solves Equation of Motion, *e.g.,* Netwon 2nd law, to evolve positions and velocities of discrete particles (Molecular dynamics, Dissipative particle dynamics, *etc.*)
- § *Continuum-particle coupling* aims solve complex materials/physics problems (multiple length-scales, phases, and physics) 2**MICCo**

Hydrodynamics

- § Moving particles in continuous fluid can disturb the flow field, which affects the motions of all the other particles within the field.
- § Hydrodynamics: in-direct interactions mediated by fluid.

Many-body and long-range \rightarrow expensive

Hydrodynamics

Stokes equations:

Unconfined space: Able to solve it analytically

 $\mathbf{u}(\mathbf{x}) = \sum_{\nu} \mathbf{G}(\mathbf{x} - \mathbf{x}_{\nu}) \cdot \mathbf{f}_{\nu}$

 $G(x) = {1 \over 8\pi n r} \left[\delta + {xx \over r^2} \right]$ (free-space Green's function of Stokes equation)

Confined space: Directly FEM cause singularity

time \bullet \bullet \bullet \bullet

(a) *d* = 2

m E^m (*Qm*)

Hydrodynamics

- § **Challenge 1: Confined space**
- **1. Satisfy non-slip boundary conditions** \rightarrow no analytic solution is available in complex geometries.
- 2. Directly using standard FEM will cause singularities in the solutions
- § **Challenge 2: Brownian motions of particles**
	- **1. Conserve Fluctuation-dissipation theorem** : coupling dynamics of particles (Brownian dynamics) with dynamics of fluid (stokes flow).

DNA diffusion within confined channel

Parallel Finite Element – Generalized Geometry Ewaldlike method (pFE-GgEm)

■ Step 1. Solve Stokes flow using GgEm (O(N)), satisfying non-slip boundary conditions and avoid singularity.

■ Step 2. Evolving particle motions using stochastic PDE.

Step 1: solve stokes flow using GgEM

MICCo

Step 2: Evolving particle motion using Stochastic PDE

$$
d\mathbf{R} = \left[\mathbf{U}_0 + \mathbf{M} \cdot \mathbf{F} + k_B T \frac{\partial}{\partial \mathbf{R}} \cdot \mathbf{M}\right] dt + \sqrt{2} \mathbf{B} \cdot d\mathbf{w}
$$

 $\mathbf{B} \cdot \mathbf{B}^T = k_n T \mathbf{M} = \mathbf{D}$ $M * F = U$

: the positions of particles

 U_0 : undisturbed velocities of particles (induced by pressure driven flow, shear, etc) M: mobility tensor (cannot be explicitly built)

F: non-hydrodynamic and non-Brownian force (electrostatic, spring force, etc.) **dw:** random vector with mean zero and variance dt

Midpoint time integration scheme. –Fixman, J. Chem. Phys, 69, 1527 (1978)

$$
\mathbf{R}^{\dagger} = \mathbf{R} + \frac{1}{2} [\mathbf{U}_0(\mathbf{R}) + \mathbf{M}(\mathbf{R}) \cdot \mathbf{F}(\mathbf{R})] \Delta t + \frac{1}{2} \sqrt{2} \mathbf{D}(\mathbf{R}) \mathbf{B}^{-1}(\mathbf{R}) \cdot d\mathbf{w}(t)
$$

$$
\mathbf{R}(t + \Delta t) = \mathbf{R}(t) + [\mathbf{U}_0(\mathbf{R}^{\dagger}) + \mathbf{M}(\mathbf{R}^{\dagger}) \cdot \mathbf{F}(\mathbf{R}^{\dagger})] \Delta t + \sqrt{2} \mathbf{D}(\mathbf{R}^{\dagger}) \mathbf{B}^{-1}(\mathbf{R}) \cdot d\mathbf{w}(t)
$$

GGEM
Chebyshev polynomial
~\mathbf{M}^{\dagger} \mathbf{V} \mathbf{E} \mathbf{C}

M**Vec* **= solution of Stokes induced by** *Vec*

COPSS-Hydrodynamics: parallel performance

Each time step requires multiple solves of Stokes equation, thus an efficient and parallel Stokes solver is necessary.

COPSS-Hydrodynamics: correct diffusion behavior

FIG. 3. (a) Typical in-plane MSD for DNA molecules with contour length of 21 μ m, 42 μ m and 84 μ m confined in a slit. (b) Confined chain diffusion coefficient as a function of the confinement $R_{g, \text{bulk}}/H$

X., Zhao, J., Li, X. Jiang, J. Hernandez-Ortiz, J. J de Pablo. JCP, 2017

COPSS-Hydrodynamics: complex geometry

X., Zhao, J., Li, X. Jiang, J. Hernandez-Ortiz, J. J de Pablo. JCP, 2017

COPSS-Hydrodynamics: rigid particles

Particle sedimentation under gravity within a confined channel. Particle shapes can be arbitrary in COPSS-Hydrodynamics.

- 10 particles with different shapes/sizes
- 2600 tracking points
- P2-P1 mixed element (Hex20)
- 10125 elements
- 145,696 degrees of freedom
- 2580 time steps

Summary:

- COPSS-hydrodynamics relies on Stochastic PDE for trajectory integration.
- § Each integration step requires multiple solves of Stokes equation using a parallel O(N) algorithm, **pFE-GgEm.**
- COPSS-Hydrodynamics can work with complex confined geometries.
- COPSS-Hydrodynamics can work with rigid-particles with arbitrary shapes.
- **Implement of user-defined features, force fields, geometries, etc., is straight-**-forward.

