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What is Continuum-Particle Simulation?

§ Continuum simulation (Grid-based) solves Partial Differential Equations on 
discretized grids or meshes (Finite element method, Finite difference method, 
Boundary element method, etc.)

§ Particle simulation (Particle-based) solves Equation of Motion, e.g., Netwon 2nd

law, to evolve positions and velocities of discrete particles (Molecular dynamics, 
Dissipative particle dynamics, etc.)

§ Continuum-particle coupling aims solve complex materials/physics problems 
(multiple length-scales, phases, and physics)
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Hydrodynamics
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HydrodynamicsConfined walls

§ Moving particles in continuous fluid can disturb the flow field, which affects the 
motions of all the other particles within the field.

§ Hydrodynamics: in-direct interactions mediated by fluid.

Chan, EY et al. 

Many-body and long-range  à expensive



Stokes equations:

Unconfined space:

(free-space Green’s function of Stokes equation)

Able to solve it analytically

Confined space:

Hydrodynamics

Directly FEM cause singularity
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Figure 4: (a) Two-dimensional and (b) three-
dimensional view of the FEM solution for the non-
smooth test problem with m = 3.

timal for problems involving point sources modeled
by Dirac delta distributions.
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element approximation for time-dependent dif-
fusion with measure-valued source. Numer.

Math., vol. 122, no. 4, pp. 709–723, 2012.

6

Excerpt from the Proceedings of the 2015 COMSOL Conference in Boston

singularity

(a)

(b)

Figure 4: (a) Two-dimensional and (b) three-
dimensional view of the FEM solution for the non-
smooth test problem with m = 3.

timal for problems involving point sources modeled
by Dirac delta distributions.

Acknowledgments

The hardware used in the computational stud-
ies is part of the UMBC High Performance Com-
puting Facility (HPCF). The facility is supported
by the U.S. National Science Foundation through
the MRI program (grant nos. CNS–0821258 and
CNS–1228778) and the SCREMS program (grant
no. DMS–0821311), with additional substantial
support from the University of Maryland, Bal-
timore County (UMBC). See hpcf.umbc.edu for
more information on HPCF and the projects using

Table 3: Convergence studies for the non-smooth
test problem in two and three dimensions.

m E
m

(Q
m

)
0 9.332e–02
1 4.589e–02 (1.02)
2 2.468e–02 (0.89)
3 1.256e–02 (0.97)
4 6.311e–03 (0.99)
5 3.160e–03 (1.00)

(a) d = 2

m E
m

(Q
m

)
0 1.026e–01
1 6.990e–02 (0.55)
2 4.842e–02 (0.53)
3 3.410e–02 (0.51)
4 2.410e–02 (0.50)
5 1.704e–02 (0.50)

(b) d = 3

its resources. Co-author Graf acknowledges finan-
cial support as HPCF RA.

References

[1] Dietrich Braess. Finite Elements. Cambridge
University Press, third edition, 2007.

[2] Kourosh M. Kalayeh, Jonathan S. Graf, and
Matthias K. Gobbert. FEM convergence stud-
ies for 2-D and 3-D elliptic PDEs with smooth
and non-smooth source terms in COMSOL 5.1.
Technical Report HPCF–2015–19, UMBC High
Performance Computing Facility, University of
Maryland, Baltimore County, 2015.

[3] Michael Renardy and Robert C. Rogers. An

Introduction to Partial Di↵erential Equations,
vol. 13 of Texts in Applied Mathematics.
Springer-Verlag, second edition, 2004.

[4] Ridgway Scott. Finite element convergence for
singular data. Numer. Math., vol. 21, pp. 317–
327, 1973.

[5] Thomas I. Seidman, Matthias K. Gobbert,
David W. Trott, and Martin Kruž́ık. Finite
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DNA diffusion within confined channel

§ Challenge 1: Confined space

1. Satisfy non-slip boundary conditions  à no analytic solution is available in complex 
geometries. 

2. Directly using standard FEM will cause singularities in the solutions

§ Challenge 2: Brownian motions of particles

1. Conserve Fluctuation-dissipation theorem : coupling dynamics of particles (Brownian 
dynamics) with dynamics of fluid (stokes flow). 



Parallel Finite Element – Generalized Geometry Ewald-
like method (pFE-GgEm)

§ Step 1. Solve Stokes flow using GgEm (O(N)), satisfying non-slip boundary 
conditions and avoid singularity.  

§ Step 2. Evolving particle motions using stochastic PDE.
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Step 1: solve stokes flow using GgEM
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Figure 4: (a) Two-dimensional and (b) three-
dimensional view of the FEM solution for the non-
smooth test problem with m = 3.
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~ M*Vec

Midpoint time integration scheme. –Fixman, J. Chem. Phys, 69, 1527 (1978)

Step 2: Evolving particle motion using Stochastic PDE

M*Vec = solution of Stokes induced by Vec

𝑴 ∗ 𝑭 = 𝑼

𝑹:	the positions of particles
𝑼𝟎: undisturbed velocities of particles (induced by pressure driven flow, shear, etc)
𝑴: mobility tensor (cannot be explicitly built)
F: non-hydrodynamic and non-Brownian force (electrostatic, spring force, etc.)
dw: random vector with mean zero and variance dt



COPSS-Hydrodynamics: parallel performance

Each time step requires multiple solves of Stokes equation, thus an efficient and 
parallel Stokes solver is necessary.

X., Zhao, J., Li, X. Jiang, J. Hernandez-Ortiz, J. J de Pablo. JCP, 2017



COPSS-Hydrodynamics: correct diffusion behavior

X., Zhao, J., Li, X. Jiang, J. Hernandez-Ortiz, J. J de Pablo. JCP, 2017



COPSS-Hydrodynamics: complex geometry

X., Zhao, J., Li, X. Jiang, J. Hernandez-Ortiz, J. J de Pablo. JCP, 2017
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COPSS-Hydrodynamics: rigid particles

• 10 particles with different 
shapes/sizes

• 2600 tracking points
• P2-P1 mixed element (Hex20)
• 10125 elements
• 145,696 degrees of freedom
• 2580 time steps

Particle sedimentation under gravity within a confined channel. Particle shapes can 
be arbitrary in COPSS-Hydrodynamics. 



13

Summary: 

§ COPSS-hydrodynamics relies on Stochastic PDE for trajectory integration.

§ Each integration step requires multiple solves of Stokes equation using a 
parallel O(N) algorithm, pFE-GgEm.

§ COPSS-Hydrodynamics can work with complex confined geometries.

§ COPSS-Hydrodynamics can work with rigid-particles with arbitrary shapes.

§ Implement of user-defined features, force fields, geometries, etc., is straight-
-forward. 


